Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011211, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928089

RESUMEN

Wolbachia are common bacteria among terrestrial arthropods. These endosymbionts transmitted through the female germline manipulate their host reproduction through several mechanisms whose most prevalent form called Cytoplasmic Incompatibility -CI- is a conditional sterility syndrome eventually favoring the infected progeny. Upon fertilization, the sperm derived from an infected male is only compatible with an egg harboring a compatible Wolbachia strain, this sperm leading otherwise to embryonic death. The Wolbachia Cif factors CidA and CidB responsible for CI and its neutralization function as a Toxin-Antitoxin system in the mosquito host Culex pipiens. However, the mechanism of CidB toxicity and its neutralization by the CidA antitoxin remain unexplored. Using transfected insect cell lines to perform a structure-function analysis of these effectors, we show that both CidA and CidB are chromatin interactors and CidA anchors CidB to the chromatin in a cell-cycle dependent-manner. In absence of CidA, the CidB toxin localizes to its own chromatin microenvironment and acts by preventing S-phase completion, independently of its deubiquitylase -DUB- domain. Experiments with transgenic Drosophila show that CidB DUB domain is required together with CidA during spermatogenesis to stabilize the CidA-CidB complex. Our study defines CidB functional regions and paves the way to elucidate the mechanism of its toxicity.


Asunto(s)
Proteínas de Drosophila , Wolbachia , Animales , Masculino , Cromatina/metabolismo , Wolbachia/fisiología , Semen/metabolismo , Animales Modificados Genéticamente , Drosophila/metabolismo , Citoplasma/metabolismo , Proteína A Centromérica/metabolismo , Proteínas de Drosophila/metabolismo
2.
Curr Biol ; 32(6): 1319-1331.e5, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134330

RESUMEN

Wolbachia are widespread endosymbiotic bacteria that manipulate the reproduction of arthropods through a diversity of cellular mechanisms. In cytoplasmic incompatibility (CI), a sterility syndrome originally discovered in the mosquito Culex pipiens, uninfected eggs fertilized by sperm from infected males are selectively killed during embryo development following the abortive segregation of paternal chromosomes in the zygote. Despite the recent discovery of Wolbachia CI factor (cif) genes, the mechanism by which they control the fate of paternal chromosomes at fertilization remains unknown. Here, we have analyzed the cytological distribution and cellular impact of CidA and CidB, a pair of Cif proteins from the Culex-infecting Wolbachia strain wPip. We show that expression of CidB in Drosophila S2R+ cells induces apoptosis unless CidA is co-expressed and associated with its partner. In transgenic Drosophila testes, both effectors colocalize in germ cells until the histone-to-protamine transition in which only CidB is retained in maturing spermatid nuclei. We further show that CidB is similarly targeted to maturing sperm of naturally infected Culex mosquitoes. At fertilization, CidB associates with paternal DNA regions exhibiting DNA replication stress, as a likely cause of incomplete replication of paternal chromosomes at the onset of the first mitosis. Importantly, we demonstrate that inactivation of the deubiquitylase activity of CidB does not abolish its cell toxicity or its ability to induce CI in Drosophila. Our study thus demonstrates that CI functions as a transgenerational toxin-antidote system and suggests that CidB acts by poisoning paternal DNA replication in incompatible crosses.


Asunto(s)
Culex , Wolbachia , Animales , Culex/genética , Citoplasma , Citosol , Drosophila , Masculino , Wolbachia/genética
3.
Parasitol Res ; 121(4): 1199-1206, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35006317

RESUMEN

The filarial nematode Onchocerca volvulus causes onchocerciasis (river blindness), a neglected tropical disease affecting 21 million people, mostly in Sub-Saharan Africa. Targeting the endosymbiont Wolbachia with antibiotics leads to permanent sterilization and killing of adult worms. The gold standard to assess Wolbachia depletion is the histological examination of adult worms in nodules beginning at 6 months post-treatment. However, nodules can only be used once, limiting the time points to monitor Wolbachia depletion. A diagnostic to longitudinally monitor Wolbachia depletion from microfilariae (MF) at more frequent intervals < 6 months post-treatment would accelerate clinical trials of antiwolbachials. We developed a TaqMan qPCR amplifying the single-copy gene wOvftsZ to quantify Wolbachia from as few as one MF that had migrated from skin biopsies and compared quantification using circular and linearized plasmids or synthetic dsDNA (gBlock®). qPCR for MF from the rodent nematode Litomosoides sigmodontis was used to support the reproducibility and validate the principle. The qPCR using as few as 2 MF from O. volvulus and L. sigmodontis reproducibly quantified Wolbachia. Use of a linearized plasmid standard or synthesized dsDNA resulted in numbers of Wolbachia/MF congruent with biologically plausible estimates in O. volvulus and L. sigmodontis MF. The qPCR assay yielded a median of 48.8 (range 1.5-280.5) Wolbachia/O. volvulus MF. The qPCR is a sensitive tool for quantifying Wolbachia in a few MF from skin biopsies and allows for establishing the qPCR as a surrogate parameter for monitoring Wolbachia depletion in adult worms of new antiwolbachial candidates.


Asunto(s)
Filarioidea , Onchocerca volvulus , Wolbachia , Animales , Humanos , Microfilarias , Onchocerca , Onchocerca volvulus/genética , Reproducibilidad de los Resultados , Wolbachia/efectos de los fármacos , Wolbachia/genética
4.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563818

RESUMEN

In arthropods, Wolbachia endosymbionts induce conditional sterility, called cytoplasmic incompatibility (CI), resulting from embryonic lethality. CI penetrance (i.e., embryonic death rate) varies depending on host species and Wolbachia strains involved. All Culex pipiens mosquitoes are infected by the endosymbiotic alphaproteobacteria Wolbachia wPip. CI in Culex, characterized as a binary "compatible/incompatible" phenomenon, revealed an unparalleled diversity of patterns linked to the amplification-diversification of cidA and cidB genes. Here, we accurately studied CI penetrance variations in the light of cid genes divergence by generating a C. pipiens compatibility matrix between 11 lines hosting different phylogenetic wPip groups and exhibiting distinct cid gene repertoires. We showed, as expected, that crosses involving wPip from the same group were mostly compatible. In contrast, only 22% of the crosses involving different wPip groups were compatible, while 54% were fully incompatible. For the remaining 24% of the crosses, "intermediate" compatibilities were reported, and a cytological observation of the first zygotic division confirmed the occurrence of "canonical" CI phenotypes in a fraction of the eggs. Backcross experiments demonstrated that intermediate compatibilities were not linked to host genetic background but to the Wolbachia strains involved. This previously unstudied intermediate penetrance CI was more severe and frequent in crosses involving wPip-IV strains exhibiting cid variants markedly divergent from other wPip groups. Our data demonstrate that CI is not always a binary compatible/incompatible phenomenon in C. pipiens but that intermediate compatibilities putatively resulting from partial mismatch due to Cid proteins divergence exist in this species complex.IMPORTANCECulex pipiens mosquitoes are infected with wPip. These endosymbionts induce a conditional sterility called CI resulting from embryonic deaths, which constitutes a cornerstone for Wolbachia antivectorial methods. Recent studies revealed that (i) two genes, cidA and cidB, are central in Wolbachia-CI mechanisms, and (ii) compatibility versus incompatibility between mosquito lines depends on the wPip phylogenetic groups at play. Here, we studied CI variations in relation to wPip groups and cid genes divergence. We showed, as expected, that the crosses involving wPip from the same group were compatible. In contrast, 78% of the crosses involving different wPip groups were partially or fully incompatible. In such crosses, we reported defects during the first zygotic division, a hallmark of CI. We showed that CI was more severe and frequent in crosses involving wPip-IV strains exhibiting cid variants, which markedly diverge from those of other wPip groups.


Asunto(s)
Proteína A Centromérica/genética , Culex/microbiología , Citoplasma/fisiología , Citosol/microbiología , Wolbachia/genética , Animales , Línea Celular , Culex/fisiología , Femenino , Flujo Genético , Compuestos Heterocíclicos con 2 Anillos , Especificidad del Huésped , Masculino , Fenotipo , Filogenia , Simbiosis , Tiourea/análogos & derivados
5.
PLoS Negl Trop Dis ; 15(1): e0008935, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406151

RESUMEN

Brugia malayi is a human filarial nematode responsible for elephantiasis, a debilitating condition that is part of a broader spectrum of diseases called filariasis, including lymphatic filariasis and river blindness. Almost all filarial nematode species infecting humans live in mutualism with Wolbachia endosymbionts, present in somatic hypodermal tissues but also in the female germline which ensures their vertical transmission to the nematode progeny. These α-proteobacteria potentially provision their host with essential metabolites and protect the parasite against the vertebrate immune response. In the absence of Wolbachia wBm, B. malayi females become sterile, and the filarial nematode lifespan is greatly reduced. In order to better comprehend this symbiosis, we investigated the adaptation of wBm to the host nematode soma and germline, and we characterized these cellular environments to highlight their specificities. Dual RNAseq experiments were performed at the tissue-specific and ovarian developmental stage levels, reaching the resolution of the germline mitotic proliferation and meiotic differentiation stages. We found that most wBm genes, including putative effectors, are not differentially regulated between infected tissues. However, two wBm genes involved in stress responses are upregulated in the hypodermal chords compared to the germline, indicating that this somatic tissue represents a harsh environment to which wBm have adapted. A comparison of the B. malayi and C. elegans germline transcriptomes reveals a poor conservation of genes involved in the production of oocytes, with the filarial germline proliferative zone relying on a majority of genes absent from C. elegans. The first orthology map of the B. malayi genome presented here, together with tissue-specific expression enrichment analyses, indicate that the early steps of oogenesis are a developmental process involving genes specific to filarial nematodes, that likely result from evolutionary innovations supporting the filarial parasitic lifestyle.


Asunto(s)
Evolución Biológica , Brugia Malayi/genética , Carisoprodol , Elefantiasis/genética , Células Germinativas , Animales , Caenorhabditis elegans , Filariasis Linfática/genética , Femenino , Expresión Génica , Genoma , Humanos , Oogénesis , Análisis de Secuencia de ARN , Simbiosis , Wolbachia/fisiología
6.
PLoS Negl Trop Dis ; 13(8): e0007691, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31469835

RESUMEN

Lung disease is regularly reported in human filarial infections but the molecular pathogenesis of pulmonary filariasis is poorly understood. We used Litomosoides sigmodontis, a rodent filaria residing in the pleural cavity responsible for pleural inflammation, to model responses to human filarial infections and probe the mechanisms. Wild-type and Th2-deficient mice (ΔdblGata1 and Il-4receptor(r)a-/-/IL-5-/-) were infected with L. sigmodontis. Survival and growth of adult filariae and prevalence and density of microfilariae were evaluated. Cells and cytokines in the pleural cavity and bronchoalveolar space were characterized by imaging, flow cytometry and ELISA. Inflammatory pathways were evaluated by transcriptomic microarrays and lungs were isolated and analyzed for histopathological signatures. 40% of WT mice were amicrofilaremic whereas almost all mutant mice display blood microfilaremia. Microfilariae induced pleural, bronchoalveolar and lung-tissue inflammation associated with an increase in bronchoalveolar eosinophils and perivascular macrophages, production of mucus, visceral pleura alterations and fibrosis. Inflammation and pathology were decreased in Th2-deficient mice. An IL-4R-dependent increase of CD169 was observed on pleural and bronchoalveolar macrophages in microfilaremic mice. CD169+ tissue-resident macrophages were identified in the lungs with specific localizations. Strikingly, CD169+ macrophages increased significantly in the perivascular area in microfilaremic mice. These data describe lung inflammation and pathology in chronic filariasis and emphasize the role of Th2 responses according to the presence of microfilariae. It is also the first report implicating CD169+ lung macrophages in response to a Nematode infection.


Asunto(s)
Filariasis/patología , Filarioidea/inmunología , Inflamación/patología , Pulmón/inmunología , Macrófagos/inmunología , Receptores de Interleucina-4/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/análisis , Animales , Modelos Animales de Enfermedad , Femenino , Filariasis/inmunología , Inflamación/inmunología , Pulmón/patología , Macrófagos/química , Ratones Endogámicos BALB C , Células Th2/inmunología
7.
Sci Transl Med ; 11(491)2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068442

RESUMEN

Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targets Wolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination of Wolbachia in the in vivo Litomosoides sigmodontis filarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantify Wolbachia elimination in Brugia pahangi filarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed in L. sigmodontis, Brugia malayi, and Onchocerca ochengi in vivo preclinical models of filarial disease and in vitro selectivity against Loa loa (a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.


Asunto(s)
Antibacterianos/uso terapéutico , Descubrimiento de Drogas , Filariasis/tratamiento farmacológico , Filariasis/parasitología , Filarioidea/fisiología , Quinazolinas/uso terapéutico , Animales , Antibacterianos/química , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Femenino , Filarioidea/efectos de los fármacos , Filarioidea/microbiología , Ensayos Analíticos de Alto Rendimiento , Ratones , Fenotipo , Quinazolinas/química , Quinazolinas/farmacología , Bibliotecas de Moléculas Pequeñas , Wolbachia/efectos de los fármacos
8.
Microbiol Spectr ; 7(2)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30953430

RESUMEN

The Wolbachia endosymbionts encompass a large group of intracellular bacteria of biomedical and veterinary relevance, closely related to Anaplasma, Ehrlichia, and Rickettsia. This genus of Gram-negative members of the Alphaproteobacteria does not infect vertebrates but is instead restricted to ecdysozoan species, including terrestrial arthropods and a family of parasitic filarial nematodes, the Onchocercidae. The Wolbachia profoundly impact not only the ecology and evolution but also the reproductive biology of their hosts, through a wide range of symbiotic interactions. Because they are essential to the survival and reproduction of their filarial nematode hosts, they represent an attractive target to fight filariasis. Their abilities to spread through insect populations and to affect vector competence through pathogen protection have made Wolbachia a staple for controlling vector-borne diseases. Estimated to be present in up to 66% of insect species, the Wolbachia are probably the most abundant endosymbionts on earth. Their success resides in their unique capacity to infect and manipulate the host germ line to favor their vertical transmission through the maternal lineage. Because the Wolbachia resist genetic manipulation and growth in axenic culture, our understanding of their biology is still in its infancy. Despite these limitations, the "-omics" revolution combined with the use of well-established and emerging experimental host models is accelerating our comprehension of the host phenotypes caused by Wolbachia, and the identification of Wolbachia effectors is ongoing.


Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Wolbachia/fisiología , Animales , Artrópodos/microbiología , Filarioidea/microbiología , Insectos/microbiología , Simbiosis , Wolbachia/clasificación , Wolbachia/genética , Wolbachia/patogenicidad
9.
PLoS Negl Trop Dis ; 13(3): e0007218, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30893296

RESUMEN

The reproductive parasites Wolbachia are the most common endosymbionts on earth, present in a plethora of arthropod species. They have been introduced into mosquitos to successfully prevent the spread of vector-borne diseases, yet the strategies of host cell subversion underlying their obligate intracellular lifestyle remain to be explored in depth in order to gain insights into the mechanisms of pathogen-blocking. Like some other intracellular bacteria, Wolbachia reside in a host-derived vacuole in order to replicate and escape the immune surveillance. Using here the pathogen-blocking Wolbachia strain from Drosophila melanogaster, introduced into two different Drosophila cell lines, we show that Wolbachia subvert the endoplasmic reticulum to acquire their vacuolar membrane and colonize the host cell at high density. Wolbachia redistribute the endoplasmic reticulum, and time lapse experiments reveal tight coupled dynamics suggesting important signalling events or nutrient uptake. Wolbachia infection however does not affect the tubular or cisternal morphologies. A fraction of endoplasmic reticulum becomes clustered, allowing the endosymbionts to reside in between the endoplasmic reticulum and the Golgi apparatus, possibly modulating the traffic between these two organelles. Gene expression analyses and immunostaining studies suggest that Wolbachia achieve persistent infections at very high titers without triggering endoplasmic reticulum stress or enhanced ERAD-driven proteolysis, suggesting that amino acid salvage is achieved through modulation of other signalling pathways.


Asunto(s)
Drosophila melanogaster/microbiología , Retículo Endoplásmico/microbiología , Membranas Intracelulares/microbiología , Estrés Fisiológico/fisiología , Simbiosis/fisiología , Wolbachia/fisiología , Animales , Línea Celular , Drosophila melanogaster/citología , Retículo Endoplásmico/metabolismo , Perfilación de la Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/microbiología , Interacciones Huésped-Patógeno , Membranas Intracelulares/metabolismo , Estrés Fisiológico/genética , Simbiosis/genética , Vacuolas/microbiología , Wolbachia/patogenicidad
10.
PLoS Pathog ; 14(10): e1007364, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30321239

RESUMEN

Wolbachia are maternally inherited endosymbiotic bacteria, widespread among arthropods thanks to host reproductive manipulations that increase their prevalence into host populations. The most commonly observed manipulation is cytoplasmic incompatibility (CI). CI leads to embryonic death in crosses between i) infected males and uninfected females and ii) individuals infected with incompatible Wolbachia strains. CI can be conceptualized as a toxin-antidote system where a toxin deposited by Wolbachia in the sperm would induce embryonic death unless countered by an antidote produced by Wolbachia present in the eggs. In Drosophila melanogaster, transgenic expression of Wolbachia effector cidB revealed its function of CI-inducing toxin. Moreover in Culex pipiens, the diversity of cidB variants present in wPip strains accounts for the diversity in crossing-types. We conducted cytological analyses to determine the CI mechanisms that lead to embryonic death in C. pipiens, and assess whether diversity in crossing-types could be based on variations in these mechanisms. We revealed that paternal chromatin condensation and segregation defects during the first embryonic division are always responsible for embryonic death. The strongest observed defects lead to an exclusion of the paternal chromatin from the first zygotic division, resulting in haploid embryos unable to hatch. The proportion of unhatched haploid embryos, developing with only maternal chromatin, which reflects the frequency of strong defects can be considered as a proxy of CI intensity at the cellular level. We thus studied the putative effect of variations in crossing types and cidB diversification on CI defects intensity. Incompatible crosses involving distinct wPip strains revealed that CI defects intensity depends on the Wolbachia strains hosted by the males and is linked to the diversity of cidB genes harbored in their genomes. These results support that, additionally to its implication in C. pipiens crossing type variability, cidB diversification also influences the strength of CI embryonic defects.


Asunto(s)
Animales Modificados Genéticamente/microbiología , Proteínas Bacterianas/metabolismo , Culex/microbiología , Citoplasma/microbiología , Drosophila melanogaster/microbiología , Polimorfismo Genético , Wolbachia/fisiología , Animales , Animales Modificados Genéticamente/genética , Proteínas Bacterianas/genética , Culex/genética , Citoplasma/patología , Drosophila melanogaster/genética , Femenino , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Especificidad del Huésped , Masculino , Fenotipo , Simbiosis
12.
Dev Cell ; 45(2): 198-211.e3, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29689195

RESUMEN

Although symbiotic interactions are ubiquitous in the living world, examples of developmental symbioses are still scarce. We show here the crucial role of Wolbachia in the oogenesis of filarial nematodes, a class of parasites of biomedical and veterinary relevance. We applied newly developed techniques to demonstrate the earliest requirements of Wolbachia in the parasite germline preceding the production of faulty embryos in Wolbachia-depleted nematodes. We show that Wolbachia stimulate germline proliferation in a cell-autonomous manner, and not through nucleotide supplementation as previously hypothesized. We also found Wolbachia to maintain the quiescence of a pool of germline stem cells to ensure a constant delivery of about 1,400 eggs per day for many years. The loss of quiescence upon Wolbachia depletion as well as the disorganization of the distal germline suggest that Wolbachia are required to execute the proper germline stem cell developmental program in order to produce viable eggs and embryos.


Asunto(s)
Brugia Malayi/crecimiento & desarrollo , Filariasis/patología , Células Germinativas/citología , Proteínas del Helminto/metabolismo , Células Madre/fisiología , Simbiosis , Wolbachia/fisiología , Animales , Brugia Malayi/microbiología , Proliferación Celular , Femenino , Filariasis/metabolismo , Filariasis/parasitología , Células Germinativas/microbiología , Células Germinativas/fisiología , Proteínas del Helminto/genética , Masculino , Células Madre/citología , Células Madre/microbiología
13.
Development ; 143(1): 160-73, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26586219

RESUMEN

C. elegans embryonic elongation is a morphogenetic event driven by actomyosin contractility and muscle-induced tension transmitted through hemidesmosomes. A role for the microtubule cytoskeleton has also been proposed, but its contribution remains poorly characterized. Here, we investigate the organization of the non-centrosomal microtubule arrays present in the epidermis and assess their function in elongation. We show that the microtubule regulators γ-tubulin and NOCA-1 are recruited to hemidesmosomes and adherens junctions early in elongation. Several parallel approaches suggest that microtubule nucleation occurs from these sites. Disrupting the epidermal microtubule array by overexpressing the microtubule-severing protein Spastin or by inhibiting the C. elegans ninein homolog NOCA-1 in the epidermis mildly affected elongation. However, microtubules were essential for elongation when hemidesmosomes or the activity of the Rho kinase LET-502/ROCK were partially compromised. Imaging of junctional components and genetic analyses suggest that epidermal microtubules function together with Rho kinase to promote the transport of E-cadherin to adherens junctions and myotactin to hemidesmosomes. Our results indicate that the role of LET-502 in junctional remodeling is likely to be independent of its established function as a myosin II activator, but requires a microtubule-dependent pathway involving the syntaxin SYX-5. Hence, we propose that non-centrosomal microtubules organized by epidermal junctions contribute to elongation by transporting junction remodeling factors, rather than having a mechanical role.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Células Epidérmicas , Microtúbulos/metabolismo , Quinasas Asociadas a rho/metabolismo , Actomiosina/metabolismo , Uniones Adherentes/metabolismo , Animales , Cadherinas/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas del Citoesqueleto , Citoesqueleto/metabolismo , Epidermis/metabolismo , Hemidesmosomas/metabolismo , Morfogénesis/fisiología , Proteínas Musculares/metabolismo , Miosina Tipo II/metabolismo , Proteínas Nucleares , Transporte de Proteínas/genética , Proteínas Qa-SNARE/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Tubulina (Proteína)/metabolismo
14.
G3 (Bethesda) ; 4(11): 2241-5, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25236732

RESUMEN

During spermiogenesis, histones are massively replaced with protamines. A previous report showed that Drosophila males homozygous for a genomic deletion covering several genes including the protamine-like genes Mst35Ba/b are surprisingly fertile. Here, we have precisely deleted the Mst35B locus by homologous recombination, and we confirm the dispensability of Mst35Ba/b for fertility.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Infertilidad Masculina/genética , Protaminas/genética , Espermatozoides/citología , Secuencia de Aminoácidos , Animales , Drosophila/fisiología , Eliminación de Gen , Masculino , Datos de Secuencia Molecular
15.
PLoS Negl Trop Dis ; 8(8): e3096, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25165813

RESUMEN

While bacterial symbionts influence a variety of host cellular responses throughout development, there are no documented instances in which symbionts influence early embryogenesis. Here we demonstrate that Wolbachia, an obligate endosymbiont of the parasitic filarial nematodes, is required for proper anterior-posterior polarity establishment in the filarial nematode B. malayi. Characterization of pre- and post-fertilization events in B. malayi reveals that, unlike C. elegans, the centrosomes are maternally derived and produce a cortical-based microtubule organizing center prior to fertilization. We establish that Wolbachia rely on these cortical microtubules and dynein to concentrate at the posterior cortex. Wolbachia also rely on PAR-1 and PAR-3 polarity cues for normal concentration at the posterior cortex. Finally, we demonstrate that Wolbachia depletion results in distinct anterior-posterior polarity defects. These results provide a striking example of endosymbiont-host co-evolution operating on the core initial developmental event of axis determination.


Asunto(s)
Evolución Biológica , Brugia Malayi/microbiología , Polaridad Celular/fisiología , Simbiosis/fisiología , Wolbachia/fisiología , Animales , Brugia Malayi/genética , Brugia Malayi/fisiología , Centrosoma/fisiología , Dineínas/fisiología , Centro Organizador de los Microtúbulos/fisiología , Oocitos/fisiología
16.
Parasit Vectors ; 7: 140, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24685011

RESUMEN

BACKGROUND: Wolbachia endosymbionts are a proven target for control of human disease caused by filarial nematodes. However, little is known about the occurrence of Wolbachia in taxa closely related to the superfamily Filarioidea. Our study addressed the status of Wolbachia presence in members of the superfamily Dracunculoidea by screening the human parasite Dracunculus medinensis and related species from wildlife for Wolbachia. FINDINGS: D. medinensis, D. lutrae and D. insignis specimens were all negative for Wolbachia colonization by PCR screening for the Wolbachia ftsZ, 16S rRNA and Wolbachia surface protein (wsp) sequences. The quality and purity of the DNA preparations was confirmed by amplification of nematode 18S rRNA and cytochrome c oxidase subunit I sequences. Furthermore, Wolbachia endobacteria were not detected by whole mount fluorescence staining, or by immunohistochemistry using a Wolbachia-specific antiserum. In contrast, positive control Brugia malayi worms were shown to harbour Wolbachia by PCR, fluorescence staining and immunohistochemistry. CONCLUSIONS: Three examined species of Dracunculus showed no evidence of Wolbachia endobacteria. This supports that members of the superfamily Dracunculoidea are free of Wolbachia. Within the order Spirurida, these endosymbionts appear restricted to the Filarioidea.


Asunto(s)
Dracunculiasis/veterinaria , Dracunculus/microbiología , Wolbachia/aislamiento & purificación , Animales , Animales Salvajes , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Dracunculiasis/epidemiología , Dracunculiasis/parasitología , Femenino , Ghana/epidemiología , Humanos , Visón/parasitología , Ontario/epidemiología , Nutrias/parasitología , Especificidad de la Especie
17.
Proc Natl Acad Sci U S A ; 110(19): 7748-53, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610429

RESUMEN

Lateral gene transfer events between bacteria and animals highlight an avenue for evolutionary genomic loss/gain of function. Herein, we report functional lateral gene transfer in animal parasitic nematodes. Members of the Nematoda are heme auxotrophs, lacking the ability to synthesize heme; however, the human filarial parasite Brugia malayi has acquired a bacterial gene encoding ferrochelatase (BmFeCH), the terminal step in heme biosynthesis. BmFeCH, encoded by a 9-exon gene, is a mitochondrial-targeted, functional ferrochelatase based on enzyme assays, complementation, and inhibitor studies. Homologs have been identified in several filariae and a nonfilarial nematode. RNAi and ex vivo inhibitor experiments indicate that BmFeCH is essential for viability, validating it as a potential target for filariasis control.


Asunto(s)
Brugia Malayi/enzimología , Ferroquelatasa/genética , Transferencia de Gen Horizontal , Animales , Animales Modificados Genéticamente , Teorema de Bayes , Brugia Malayi/genética , Caenorhabditis elegans/genética , Clonación Molecular , Escherichia coli/metabolismo , Exones , Femenino , Prueba de Complementación Genética , Genoma , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Masculino , Microscopía Confocal , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Filogenia , Interferencia de ARN
18.
Biol Open ; 1(6): 536-47, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23213446

RESUMEN

Parasitic filarial nematodes that belong to the Onchocercidae family live in mutualism with Wolbachia endosymbionts. We developed whole-mount techniques to follow the segregation patterns of Wolbachia through the somatic and germline lineages of four filarial species. These studies reveal multiple evolutionarily conserved mechanisms that are required for Wolbachia localization to the germline. During the initial embryonic divisions, Wolbachia segregate asymmetrically such that they concentrate in the posteriorly localized P(2) blastomere, a precursor to the adult germline and hypodermal lineages. Surprisingly, in the next division they are excluded from the germline precursor lineage. Rather, they preferentially segregate to the C blastomere, a source of posterior hypodermal cells. Localization to the germline is accomplished by a distinct mechanism in which Wolbachia invade first the somatic gonadal cells close to the ovarian distal tip cell, the nematode stem cell niche, from the hypodermis. This tropism is associated with a cortical F-actin disruption, suggesting an active engulfment. Significantly, germline invasion occurs only in females, explaining the lack of Wolbachia in the male germline. Once in the syncytial environment of the ovaries, Wolbachia rely on the rachis to multiply and disperse into the germ cells. The utilization of cell-to-cell invasion for germline colonization may indicate an ancestral mode of horizontal transfer that preceded the acquisition of the mutualism.

19.
Int J Parasitol ; 42(11): 1025-36, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23041355

RESUMEN

Wolbachia are vertically transmitted endosymbiotic bacteria of arthropods and onchocercid nematodes. It is commonly accepted that they co-evolved with their filarial hosts, and have secondarily been lost in some species. However, most of the data on the Wolbachia/Onchocercidae relationship have been derived from studies on two subfamilies, the Dirofilariinae and the Onchocercinae, which harbour parasites of humans and domestic animals. Within the last few years, analyses of more diverse material have suggested that some groups of Onchocercidae do not have Wolbachia, such as recently studied Splendidofilariinae from birds. This study takes advantage of the analysis of additional Splendidofilariinae, Rumenfilaria andersoni from a Finnish reindeer and Madathamugadia hiepei from a South African gecko, using PCR, immunohistochemical staining and whole-mount fluorescent analysis to detect Wolbachia and describe its strains. A DNA barcoding approach and phylogenetic analyses were used to investigate the symbiosis between Wolbachia and the Onchocercidae. A new supergroup F Wolbachia was demonstrated in M. hiepei, representing the first filarial nematode harbouring Wolbachia described in a non-mammalian host. In the adult, Wolbachia infects the female germline but not the hypodermis, and intestinal cells are also infected. The phylogenetic analyses confirmed a recent emergence of supergroup F. They also suggested several events of horizontal transmission between nematodes and arthropods in this supergroup, and the existence of different metabolic interactions between the filarial nematodes and their symbionts.


Asunto(s)
Nematodos/microbiología , Wolbachia/clasificación , Wolbachia/genética , Animales , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Variación Genética , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
20.
PLoS Pathog ; 8(9): e1002922, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028321

RESUMEN

Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts.


Asunto(s)
Albendazol/análogos & derivados , Brugia Malayi/microbiología , Drosophila melanogaster/microbiología , Filariasis/tratamiento farmacológico , Wolbachia/efectos de los fármacos , Albendazol/farmacología , Animales , Brugia Malayi/efectos de los fármacos , Línea Celular , Drosophila melanogaster/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microtúbulos/efectos de los fármacos , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...